How and what creation teaches us to solve mechanical problems

"It is the constantly ongoing, never-ending fight against skepticism and dogmatism, against unbelief and superstition that religion and science wage together, and the trend-setting watchword in this fight has always been and will always be: Toward God!"

Religion and Sciences, Presentation given in Baltic States May 1937

Outline

- 1. Introduction to bionics and structural mechanics
- 2. Personal contact and experience with bionics
- 3. How we (can) learn from creation
- 4. Examples

Bioinspired areas in civil engineering

- Structural design
- Material design
- Monitoring design
 - Energetic design
 - Air conditional design
 - Acoustic design
 - Sustainabilty desing
 - Preservation design

1. Introduction – What is bionics?

- The term "bionics" in german is biology + technology
- 1970 ABC US Science Fiction Series "The Bionic Woman" -> artificial body parts
- Cambridge dictionary 2018:

"The science of creating artificial systems or devices that can work as parts of living organisms."

Introduction

Definition in VDI^{**} 6220 and DIN ISO 18457-18459

Bionics

technical discipline that seeks to replicate, increase, or replace biological functions by their electronic and/or mechanical equivalents.

Note: The term "biomimetics" defined in DIN ISO 18458 is "bionics" in German.

In order to avoid a double use of the term "biomimetics", the term "bionics" defined in ISO 18458 has therefore not been translated but has also been defined as "bionics" in the German language.

** association of german engineers

biomimicry

• **biomimicry** (biomimetism, biomimesis)

philosophy and interdisciplinary design approaches taking nature as a \rightarrow model to meet the challenges of \rightarrow sustainable development (social, environmental, and economic)

The tree and its structural challenges

- dead load, self weight, permanent
- live load, not permanent -> fruit, leaves
- wind loads, not permanent
- snow and ice loads, not permanent
- thermal loads (winter, summer), varying
- dynamic loads i.e. earthquake

Structural mechanics - basics

- Gravitiy
- Equilibrium
- Forces-> deformations
- Stresses-> strains

The tree and its structural challenges

Introduction

• Dead load, self weight, permanent

The tree and its structural challenges

Introduction

• wind loads

What we learn from trees - the axiom of uniform stress Introduction

Adaptive growth reduces stressconcentrations on the surface. Unavoidable stresses are distributed evenly on the surface of a tree

The mechanical self-optimisation of trees
C. Mattheck & I. Tesari
Institute for Materials Research II, Forschungszentrum Karlsruhe
GmbH, Germany

Thomas Schmidt

A beam and its structural challenges

Beam bending failure

Beam shear failure

Simplified mechanical truss model

Beam shear failure prevented

Simplified final truss model

bio-inspired beam strengthening

Basic structural elements

2. Personal contact with bionics

- Joseph Moniers reinforced concrete
- Heinz Isler shells
- A. Baumgartner, Claus Mattheck tiger claw
- Nervous system health monitoring

Reinforced concrete

Personal contact

Thomas Schmidt

Health monitoring

Reinforcement with fiberoptic "nervous system"

Road surface "nervous system"

Personal contact

Based on rayleigh scattering measuring changes in refraction along a fiber with an optical frequency domain reflectometer (OFDR)

Isler – learning from cabbage leaves

Thomas Schmidt

sheet + gravity + water + temperature = shell structure

https://www.db-bauzeitung.de/allgemein/heinz-isler-1926-2009/

Isler explaining his "sheets analogy" – ice shells

Isler – sheets/nets

Personal contact

Isler Shell

Personal contact

What we (can) learn from a tiger claw

Personal contact

International Journal of Fatigue Volume 14, Issue 6, November 1992, Pages 387-393

SKO (soft kill option): the biological way to find an optimum structure topology

A. Baumgartner, L. Harzheim, C. Mattheck

creation – optimization

Personal contact

Soft kill optimization (iterative process)

$$E_{n+1} = \sigma_n$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

$$E_{n+1} = E_n + k (\sigma_n - \sigma_{n+1} \cos \alpha)$$

How we (can) learn from creation

How we (can) learn

Systematic/Engineering approaches

- 1. Biology push bottom up
- 2. Technology pull top down

vdi association of german engineers vdi association of german engineers

Biology push – top down

How we (can) learn

Knecht, P. (Hrsg.), Technische Textilien, 83 – 101. Deutscher Fachverlag, Frankfurt, 2006

Thomas Schmidt

Technology pull – bottom up

How we (can) learn

Speck, T.; Harder, D.; Milwich, M.; Speck, O.; Stegmaier, T.: Bionik: Die Natur als Innovationsquelle. – In: *Knecht, P.* (Hrsg.), Technische Textilien, 83 – 101. Deutscher Fachverlag, Frankfurt, 2006

Thomas Schmidt

Bionic method

Criteria of a bionic product

1. The technical application must have a biological model.

2. The biological model must have been abstracted.

3. The transfer to at least a prototypical application must have taken place.

Biomimetic development process

- **Step 1:** A shape-function analysis of a biological system is carried out (analysis).
- Step 2: The biological system is abstracted to a model (abstraction).
- Step 3: The model is transferred and applied to develop a solution or product (application).

ELisE a tool for lightweight optimization How we (can) learn

Evolutionary Light Structure Engineering Thomas Schmidt

4. Examples

- The Eiffel Tower a "bone clone"
- "The Wonder of Jena"
- The Eden Project sea urchins "on shore"
- The Kurilpa Bridge a tensegrity cell structure
- Excavator arm vs. spider leg

Eiffel Tower

Examples

The Wonder of Jena

Examples

Strength, stability, material efficiency, versatility, energy efficiency, scalability

Thomas Schmidt

Thomas Schmidt

The Eden Project

Tensegrity

Examples

Thomas Schmidt

Excavator arm vs spider leg

Examples

Thomas Schmidt

Exhibition – architecture & biomimetics Examples

5. Spiritual applications

• We need to be reinforce against stress

• Axiom of uniform stress

"Before we proceed it may be mentioned that the biblical reference

...Bear one another's burdens, ... (Gal 6:2) is in the end the request of the Axiom of Uniform Stress. That doesn't mean: Take all your partner's loads. Because the advice is directed to all its results - consequently followed by all - in a uniform "stress" distribution." Mattheck, C. (1998). The Right Load Distribution: The Axiom of Uniform Stress and Tree Shape. In: Design in Nature. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58747-4_6

Masonry and layered materials

• Lobatus gigas

Examples

Abb. 3-30 a) REM-Aufnahme einer Perlmutt-Bruchfläche mit den typischen "gestapelten" Aragonitplättchen, b) Gehäuse der großen Fechterschnecke Lobatus gigas

Thomas Schmidt